3.244 \(\int \frac{\tan ^4(e+f x)}{(a+b \tan ^2(e+f x))^3} \, dx\)

Optimal. Leaf size=145 \[ \frac{\left (a^2-6 a b-3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 \sqrt{a} b^{3/2} f (a-b)^3}+\frac{(a-5 b) \tan (e+f x)}{8 b f (a-b)^2 \left (a+b \tan ^2(e+f x)\right )}-\frac{a \tan (e+f x)}{4 b f (a-b) \left (a+b \tan ^2(e+f x)\right )^2}+\frac{x}{(a-b)^3} \]

[Out]

x/(a - b)^3 + ((a^2 - 6*a*b - 3*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(8*Sqrt[a]*(a - b)^3*b^(3/2)*f) -
 (a*Tan[e + f*x])/(4*(a - b)*b*f*(a + b*Tan[e + f*x]^2)^2) + ((a - 5*b)*Tan[e + f*x])/(8*(a - b)^2*b*f*(a + b*
Tan[e + f*x]^2))

________________________________________________________________________________________

Rubi [A]  time = 0.180763, antiderivative size = 145, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.261, Rules used = {3670, 470, 527, 522, 203, 205} \[ \frac{\left (a^2-6 a b-3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 \sqrt{a} b^{3/2} f (a-b)^3}+\frac{(a-5 b) \tan (e+f x)}{8 b f (a-b)^2 \left (a+b \tan ^2(e+f x)\right )}-\frac{a \tan (e+f x)}{4 b f (a-b) \left (a+b \tan ^2(e+f x)\right )^2}+\frac{x}{(a-b)^3} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^3,x]

[Out]

x/(a - b)^3 + ((a^2 - 6*a*b - 3*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(8*Sqrt[a]*(a - b)^3*b^(3/2)*f) -
 (a*Tan[e + f*x])/(4*(a - b)*b*f*(a + b*Tan[e + f*x]^2)^2) + ((a - 5*b)*Tan[e + f*x])/(8*(a - b)^2*b*f*(a + b*
Tan[e + f*x]^2))

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 470

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> -Simp[(a*e^(2
*n - 1)*(e*x)^(m - 2*n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(b*n*(b*c - a*d)*(p + 1)), x] + Dist[e^(2
*n)/(b*n*(b*c - a*d)*(p + 1)), Int[(e*x)^(m - 2*n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[a*c*(m - 2*n + 1) +
(a*d*(m - n + n*q + 1) + b*c*n*(p + 1))*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] &
& IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, n] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 527

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*n*(b*c - a*d)*(p + 1)), x] + Dist[1/(a*n*(b*c - a*d
)*(p + 1)), Int[(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(b*e - a*f) + e*n*(b*c - a*d)*(p + 1) + d*(b*e - a*f)
*(n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, q}, x] && LtQ[p, -1]

Rule 522

Int[((e_) + (f_.)*(x_)^(n_))/(((a_) + (b_.)*(x_)^(n_))*((c_) + (d_.)*(x_)^(n_))), x_Symbol] :> Dist[(b*e - a*f
)/(b*c - a*d), Int[1/(a + b*x^n), x], x] - Dist[(d*e - c*f)/(b*c - a*d), Int[1/(c + d*x^n), x], x] /; FreeQ[{a
, b, c, d, e, f, n}, x]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 205

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]*ArcTan[x/Rt[a/b, 2]])/a, x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rubi steps

\begin{align*} \int \frac{\tan ^4(e+f x)}{\left (a+b \tan ^2(e+f x)\right )^3} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{x^4}{\left (1+x^2\right ) \left (a+b x^2\right )^3} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{a \tan (e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}+\frac{\operatorname{Subst}\left (\int \frac{a+(a-4 b) x^2}{\left (1+x^2\right ) \left (a+b x^2\right )^2} \, dx,x,\tan (e+f x)\right )}{4 (a-b) b f}\\ &=-\frac{a \tan (e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}+\frac{(a-5 b) \tan (e+f x)}{8 (a-b)^2 b f \left (a+b \tan ^2(e+f x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{a (a+3 b)+a (a-5 b) x^2}{\left (1+x^2\right ) \left (a+b x^2\right )} \, dx,x,\tan (e+f x)\right )}{8 a (a-b)^2 b f}\\ &=-\frac{a \tan (e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}+\frac{(a-5 b) \tan (e+f x)}{8 (a-b)^2 b f \left (a+b \tan ^2(e+f x)\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{1+x^2} \, dx,x,\tan (e+f x)\right )}{(a-b)^3 f}+\frac{\left (a^2-6 a b-3 b^2\right ) \operatorname{Subst}\left (\int \frac{1}{a+b x^2} \, dx,x,\tan (e+f x)\right )}{8 (a-b)^3 b f}\\ &=\frac{x}{(a-b)^3}+\frac{\left (a^2-6 a b-3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{8 \sqrt{a} (a-b)^3 b^{3/2} f}-\frac{a \tan (e+f x)}{4 (a-b) b f \left (a+b \tan ^2(e+f x)\right )^2}+\frac{(a-5 b) \tan (e+f x)}{8 (a-b)^2 b f \left (a+b \tan ^2(e+f x)\right )}\\ \end{align*}

Mathematica [A]  time = 1.89498, size = 136, normalized size = 0.94 \[ \frac{\frac{\left (a^2-6 a b-3 b^2\right ) \tan ^{-1}\left (\frac{\sqrt{b} \tan (e+f x)}{\sqrt{a}}\right )}{\sqrt{a} b^{3/2}}-\frac{(a-b) \sin (2 (e+f x)) \left (\left (a^2+4 a b-5 b^2\right ) \cos (2 (e+f x))+a^2+2 a b+5 b^2\right )}{b ((a-b) \cos (2 (e+f x))+a+b)^2}+8 (e+f x)}{8 f (a-b)^3} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]^4/(a + b*Tan[e + f*x]^2)^3,x]

[Out]

(8*(e + f*x) + ((a^2 - 6*a*b - 3*b^2)*ArcTan[(Sqrt[b]*Tan[e + f*x])/Sqrt[a]])/(Sqrt[a]*b^(3/2)) - ((a - b)*(a^
2 + 2*a*b + 5*b^2 + (a^2 + 4*a*b - 5*b^2)*Cos[2*(e + f*x)])*Sin[2*(e + f*x)])/(b*(a + b + (a - b)*Cos[2*(e + f
*x)])^2))/(8*(a - b)^3*f)

________________________________________________________________________________________

Maple [B]  time = 0.025, size = 338, normalized size = 2.3 \begin{align*}{\frac{{a}^{2} \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{3\,ab \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{4\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{5\,{b}^{2} \left ( \tan \left ( fx+e \right ) \right ) ^{3}}{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}-{\frac{{a}^{3}\tan \left ( fx+e \right ) }{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}b}}-{\frac{{a}^{2}\tan \left ( fx+e \right ) }{4\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{3\,\tan \left ( fx+e \right ) ab}{8\,f \left ( a-b \right ) ^{3} \left ( a+b \left ( \tan \left ( fx+e \right ) \right ) ^{2} \right ) ^{2}}}+{\frac{{a}^{2}}{8\,f \left ( a-b \right ) ^{3}b}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-{\frac{3\,a}{4\,f \left ( a-b \right ) ^{3}}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}-{\frac{3\,b}{8\,f \left ( a-b \right ) ^{3}}\arctan \left ({b\tan \left ( fx+e \right ){\frac{1}{\sqrt{ab}}}} \right ){\frac{1}{\sqrt{ab}}}}+{\frac{\arctan \left ( \tan \left ( fx+e \right ) \right ) }{f \left ( a-b \right ) ^{3}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^3,x)

[Out]

1/8/f*a^2/(a-b)^3/(a+b*tan(f*x+e)^2)^2*tan(f*x+e)^3-3/4/f*a/(a-b)^3/(a+b*tan(f*x+e)^2)^2*b*tan(f*x+e)^3+5/8/f*
b^2/(a-b)^3/(a+b*tan(f*x+e)^2)^2*tan(f*x+e)^3-1/8/f*a^3/(a-b)^3/(a+b*tan(f*x+e)^2)^2/b*tan(f*x+e)-1/4/f*a^2/(a
-b)^3/(a+b*tan(f*x+e)^2)^2*tan(f*x+e)+3/8/f*b/(a-b)^3/(a+b*tan(f*x+e)^2)^2*a*tan(f*x+e)+1/8/f*a^2/(a-b)^3/b/(a
*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2))-3/4/f*a/(a-b)^3/(a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2))-3/8/f*
b/(a-b)^3/(a*b)^(1/2)*arctan(b*tan(f*x+e)/(a*b)^(1/2))+1/f/(a-b)^3*arctan(tan(f*x+e))

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^3,x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.71704, size = 1635, normalized size = 11.28 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^3,x, algorithm="fricas")

[Out]

[1/32*(32*a*b^4*f*x*tan(f*x + e)^4 + 64*a^2*b^3*f*x*tan(f*x + e)^2 + 32*a^3*b^2*f*x + 4*(a^3*b^2 - 6*a^2*b^3 +
 5*a*b^4)*tan(f*x + e)^3 - ((a^2*b^2 - 6*a*b^3 - 3*b^4)*tan(f*x + e)^4 + a^4 - 6*a^3*b - 3*a^2*b^2 + 2*(a^3*b
- 6*a^2*b^2 - 3*a*b^3)*tan(f*x + e)^2)*sqrt(-a*b)*log((b^2*tan(f*x + e)^4 - 6*a*b*tan(f*x + e)^2 + a^2 - 4*(b*
tan(f*x + e)^3 - a*tan(f*x + e))*sqrt(-a*b))/(b^2*tan(f*x + e)^4 + 2*a*b*tan(f*x + e)^2 + a^2)) - 4*(a^4*b + 2
*a^3*b^2 - 3*a^2*b^3)*tan(f*x + e))/((a^4*b^4 - 3*a^3*b^5 + 3*a^2*b^6 - a*b^7)*f*tan(f*x + e)^4 + 2*(a^5*b^3 -
 3*a^4*b^4 + 3*a^3*b^5 - a^2*b^6)*f*tan(f*x + e)^2 + (a^6*b^2 - 3*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f), 1/16*(16*
a*b^4*f*x*tan(f*x + e)^4 + 32*a^2*b^3*f*x*tan(f*x + e)^2 + 16*a^3*b^2*f*x + 2*(a^3*b^2 - 6*a^2*b^3 + 5*a*b^4)*
tan(f*x + e)^3 + ((a^2*b^2 - 6*a*b^3 - 3*b^4)*tan(f*x + e)^4 + a^4 - 6*a^3*b - 3*a^2*b^2 + 2*(a^3*b - 6*a^2*b^
2 - 3*a*b^3)*tan(f*x + e)^2)*sqrt(a*b)*arctan(1/2*(b*tan(f*x + e)^2 - a)*sqrt(a*b)/(a*b*tan(f*x + e))) - 2*(a^
4*b + 2*a^3*b^2 - 3*a^2*b^3)*tan(f*x + e))/((a^4*b^4 - 3*a^3*b^5 + 3*a^2*b^6 - a*b^7)*f*tan(f*x + e)^4 + 2*(a^
5*b^3 - 3*a^4*b^4 + 3*a^3*b^5 - a^2*b^6)*f*tan(f*x + e)^2 + (a^6*b^2 - 3*a^5*b^3 + 3*a^4*b^4 - a^3*b^5)*f)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)**4/(a+b*tan(f*x+e)**2)**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 2.41633, size = 269, normalized size = 1.86 \begin{align*} \frac{\frac{{\left (\pi \left \lfloor \frac{f x + e}{\pi } + \frac{1}{2} \right \rfloor \mathrm{sgn}\left (b\right ) + \arctan \left (\frac{b \tan \left (f x + e\right )}{\sqrt{a b}}\right )\right )}{\left (a^{2} - 6 \, a b - 3 \, b^{2}\right )}}{{\left (a^{3} b - 3 \, a^{2} b^{2} + 3 \, a b^{3} - b^{4}\right )} \sqrt{a b}} + \frac{8 \,{\left (f x + e\right )}}{a^{3} - 3 \, a^{2} b + 3 \, a b^{2} - b^{3}} + \frac{a b \tan \left (f x + e\right )^{3} - 5 \, b^{2} \tan \left (f x + e\right )^{3} - a^{2} \tan \left (f x + e\right ) - 3 \, a b \tan \left (f x + e\right )}{{\left (a^{2} b - 2 \, a b^{2} + b^{3}\right )}{\left (b \tan \left (f x + e\right )^{2} + a\right )}^{2}}}{8 \, f} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)^4/(a+b*tan(f*x+e)^2)^3,x, algorithm="giac")

[Out]

1/8*((pi*floor((f*x + e)/pi + 1/2)*sgn(b) + arctan(b*tan(f*x + e)/sqrt(a*b)))*(a^2 - 6*a*b - 3*b^2)/((a^3*b -
3*a^2*b^2 + 3*a*b^3 - b^4)*sqrt(a*b)) + 8*(f*x + e)/(a^3 - 3*a^2*b + 3*a*b^2 - b^3) + (a*b*tan(f*x + e)^3 - 5*
b^2*tan(f*x + e)^3 - a^2*tan(f*x + e) - 3*a*b*tan(f*x + e))/((a^2*b - 2*a*b^2 + b^3)*(b*tan(f*x + e)^2 + a)^2)
)/f